Calculus II - Day 6

Prof. Chris Coscia, Fall 2024
Notes by Daniel Siegel

23 September 2024

Alternating Series, Absolute v. Conditional Convergence
Goals for today:

e find a criterion that guarantees alternating series converge

e estimate convergent alternating series and bound the error

e distinguish between absolute and conditional convergence of alternating series

Example (from last week): Does this series converge or diverge?
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Since 37— diverges, so does our series.

What if the signs in a series alternate?
Example:
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This is called the Alternating Harmonic Series.

We know the Harmonic Series 1 + % + % + i + -+ = oo (diverges), but the alternating signs
change this behavior:
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The Alternating Series Test:

Let > (—1)*ay or >_(—1)¥*1a; be an alternating series (so ay, is positive for every k). If:

1) The terms of the series are non-increasing in absolute value

(0 < agg1 < ax),
2) limg 00 ax =0,

then the series converges.

Example: AHS (Alternating Harmonic Series):
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is an alternating series.

Here, aj, = 1
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Observe: 0 < 7 <

+ (terms are decreasing), and

So the AHS converges by the AST (Alternating Series Test)




Partial Sums of the Alternating Harmonic Series

1.2 .

Partial Sums ® Odd-index partial sums (57, Ss3, Ss, ...)

117 e e Even-index partial sums (S, Sy, S, -..)
S3=2
° S5 = ().78% 734
[ ] = \.
TS = 0.68
"""""""" T s =0pte o L=1n(2)
17 12

Sy =1 °

0.5 1 °
k

Alternating Series Test

Alternating Series Test: similar to the Divergence Test

In general, the DT says that if ay 4 0, > ax diverges. Usually, it’s not true that ar — 0 is
enough to say the series converges, but it is enough if the series is alternating.
Example:
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This series converges by the AST:
e Alternating v/
e ap = ﬁ: decreasing, goes to 0 v
Example:
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e Alternating v/

e Terms are decreasing in absolute value v/

e But, limy_, % =1#£0 X



Diverges by the Divergence Test.

Alternating series converge ” quickly”
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We can estimate S by looking at a partial sum:
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+ if N is odd, - if N is even

Hopefully, if N is large, Sy ~ S

Q: How close?

Let Ry = S — Sy be the Nth remainder.

To estimate S using Sy, we want |Ry| to be small.
For alternating series, we can bound this quantity:
Theorem: (Remainders of Alternating Series)

Let > (—1)*ay be a convergent alternating series with terms nonincreasing in absolute value. Let
Ry =S — Sy be the Nth remainder. Then

|Rn| < ani1
Example: Approximate S = Z,;“;l(fl)’”l% using the 9th partial sum Sy
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How close is this to the actual value of S?
By the theorem:
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Turns out:
Sg =0.74563... and S =In(2)=0.69314718...

Example: Consider the series
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This converges by the Alternating Series Test (AST). How many terms are needed to estimate the
sum with an absolute error |Ry| < 0.0017
We want to find the smallest N such that

|RN| <an+1 < 0.001

Here, a; = %, so we need
1 1

(N+ 1) = 1000




We want the smallest N such that:

Lo
(N +1)! ~ 1000

& (N +1)! > 1000

Calculating factorials:
6! =6x5x4x3x2x1=720, 7!'=7x720=5040

Therefore, take N +1=7 — N = 6.

So, S5 = 3°0_, EU™ s within 0.001 of Y0, ERT — 1 - L,




The professor remarks that it’s fascinating how e and 7 show up in places they
seemingly have ’no business being in,” and later in the course, we’ll explore why that

1S.

Alternating versus ”traditional” harmonic series:
= 1 1
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Definition: Let > aj be a series.

1) If > |ak| converges, we say > aj converges absolutely.

2) If > |ag| diverges, but > ax converges, we say Y aj converges conditionally.
The AHS converges conditionally:

1) Y2(=1)*11 converges, and

2) (=D)L =3+ diverges

However,
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converges absolutely:
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Note: If > ay, is a series where all terms are positive, it’s impossible to converge conditionally.
, because > |ag| = > ax

= must either diverge or converge absolutely.

Theorem: If Y |ax| converges, then Y ay converges. (absolute convergence implies regular

convergence)
Example: > 7, S”;C(Qk) — converge or diverge?

This series oscillates but isn’t alternating.
To show this series converges, show it converges absolutely:
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...to be continued...



